Review of Pythagorean Thm. And Intro to Trig.

$$
a^{2}+b^{2}=c^{2}
$$

Name \qquad
Warm Up Use the Pythagorean Theorem to find the missing side of the Right Triangle.

Warm Up Use the Pythagorean Theorem to find the missing side of the Right Triangle.

$$
a^{2}+b^{2}=c^{2}
$$

Name \qquad
Warm Up Use the Pythagorean Theorem to find the missing side of the Right Triangle.

Review of Pythagorean Thm. And Intro to Trig.
Construction, proof, and
ACTIVITY: Discovering the Pythagorean Theorem conjecture of the Pythagoras'

Theorem.

Required Questions:

> What tools will you need?
> How will you know your
Triangle is a right Triangle?
> How will you know your Squares, are Squares?
> What makes a Square, a Square?
> What needs to be measured?

$$
a^{2}+b^{2}=c^{2}
$$

QUESTIONS TO ANSWER, BASED ON YOUR MODEL:

1. What are the measurements of each of the 4 sides of your squares:
\qquad
\qquad
\qquad -- \square
\qquad - \qquad ,
\square
\square = \qquad , —— , \qquad
2. What is the area of each one of the Squares?
$a^{2}=$

\square $=$ \qquad

$$
\text { 3. Does } a^{2}+b^{2}=c^{2} \quad \text { ? (How close were you?) }
$$

4. Conjecture. Write 4 sentences about this experience. Describe each square, its relation to the Right Triangle, mention how Area is involved, and other important details along the way. [Be ready to share]

Pythagorean Theorem \& Similarity Review

TREE SUPPORT How long is the wire that supports the tree?
2. FIND THE ERROR

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
7^{2}+25^{2} & =c^{2} \\
674 & =c^{2} \\
\sqrt{674} & =c
\end{aligned}
$$

Describe the error in words:
\qquad
\qquad
then show proper steps to correct answer:

Main concept: Set up your proportion equation with corresponding sides, then cross multiply.

Review of Pythagorean Thm. And Intro to Trig.
"ALL YOU." Find the length of the missing side of the right triangles.

9. REASONING Use the diagram. Decide which proportions are true. Select all that apply.

(A) $\frac{D B}{D C}=\frac{D A}{D B}$
(B) $\frac{B A}{C B}=\frac{C B}{B D}$
(C) $\frac{C A}{B A}=\frac{B A}{C A}$
(D) $\frac{D B}{B C}=\frac{D A}{B A}$

Find the value of \boldsymbol{x}. (Section 8.1)
26. $\triangle D E F \sim \triangle L M N$

27. $\triangle A B C \sim \triangle Q R S$

Review of Pythagorean Thm. And Intro to Trig.

Warm Up

Name \qquad

1. Write a proportion to show the Triangles are similar, and (2). prove the proportion is True by cross-multiplication. 3. Finally, write a statement of similarity about the Triangles using "Geometry notation ~ "

Warm Up

Name \qquad

1. Write a proportion to show the Triangles are similar, and (2). prove the proportion is True by cross-multiplication. 3. Finally, write a statement of similarity about the Triangles using "Geometry notation ~ "

Warm Up

Name \qquad

1. Write a proportion to show the Triangles are similar, and (2). prove the proportion is True by cross-multiplication. 3. Finally, write a statement of similarity about the Triangles using "Geometry notation ~"

Warm Up

Name \qquad

1. Write a proportion to show the Triangles are similar, and (2). prove the proportion is True by cross-multiplication. 3. Finally, write a statement of similarity about the Triangles using "Geometry notation ~ "

Review of Pythagorean Thm. And Intro to Trig.
Construction, proof, and
ACTIVIJY: Discovering the Pythagorean Theorem conjecture of the Pythagoras' Theorem.
Required Questions:
> What tools will you need?
> How will you know your
Triangle is a right Triangle?
> How will you know your Squares, are Squares?
> What makes a Square, a Square?
> What needs to be measured?

$$
a^{2}+b^{2}=c^{2}
$$

Only to be used for arranged hours

	Ans:

Another way to check if a proportion is true, is to use "cross-products" or "cross multiplication." By multiplying the diagonals of the proportion, these cross-products must be equal. Example: In $\frac{20}{25}=\frac{4}{5}$, the cross products (products of the diagonals) are,
20.5 and 25•4. Do you see where these products come from in the proportion?

And are these cross-products equal? Does 20 $5=25 \cdot 4$?

TASK 3: Use Cross-Products/Cross-Multiplication, to verify if the following proportions are true.

$$
\text { If } \frac{a}{b}=\frac{c}{d}, \text { then } a \cdot d=b \cdot c
$$

Review of Pythagorean Thm. And Intro to Trig.
Get Ready for Competition Thursday.
2 Teams will be made,
you will relay to the board, using problems from "side 2."

GET READY FOR A NUMBER TALK:

 THINKING AND SHARING. 36109 49108TRIGONOMETRY INTRO :D

```

11948
126124

The Culture of Trigonometry
Trigonometry is a branch of Geometry, it relates Right Triangles to many-many life applications,
math situations, functions. It can use Algebra to solve problems, or show graphs, meaning variables like x , yet it can also use Greek letters as variables to represent Angles.
Lastly, it is all based on the concept of Ratios of the length of Triangles, and their constant relation to their angles of reference, based on which side is Adjacent, Opposite, and the Hypotenuse.
CLO: To introduce the culture of Trigonometry based on the following vocabulary: Ratio, Angle of Reference, Theta, Adjacent, Opposite, Hypotenuse. Students will understand and experience the relationship of the aforementioned.

RATIO:
What is the ratio of "Girls to boys" today in the class? \(\qquad\)
Ratio of 12th graders in this class to underclassmen? \(\qquad\)
Ratio of your hand to your arm? \(\qquad\)
Your cell phone's width to the desk' is (about) \(\qquad\) times smaller,
And, your cell phone's length is (about) \(\qquad\) times smaller.

\section*{SO WHAT IS RATIO? ...}
because in Trigonometry, there are 3 famous ratios: Tangent, SIne, and Cosine.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{THE GREEK ALPHABET} & \multirow[t]{2}{*}{kOol factor:} \\
\hline \({ }^{\alpha}{ }^{\alpha}\) & A & \({ }^{\text {alpha }}\) beta & \(\frac{\mathrm{a}}{\mathrm{b}}\) & \\
\hline \(\gamma\) & г & gamma & g & What is your Name in Greek? \\
\hline \(\delta\) & \(\Delta\) & delta & d & \\
\hline \(\varepsilon\) & E & epsilon & e & \\
\hline \(\zeta\) & Z & zeta & z & My Example: Mr. A. Sanchez \\
\hline \(\eta\) & H & eta & ¢ & \\
\hline \(\theta\) & \(\Theta\) & theta & th & \\
\hline 1 & I & iota & i & M \(\rho_{\text {. }}\) A. \(\Sigma \alpha v \chi \varepsilon \zeta\) \\
\hline \(\kappa\) & K & kappa & k & \\
\hline \(\lambda\) & M & \({ }_{\text {lambda }}^{\text {mu(moo) }}\) & m & Your Turn. Your Name: \\
\hline \({ }^{\mu}\) & M & mu (moo) & m & \\
\hline \(\xi\) & \(\Xi\) & xi (ksee) & \({ }^{\mathrm{n}}\) & \\
\hline - & o & omicron & - & \\
\hline \(\pi\) & \(\Pi\) & pi (pee) & p & "Theta" can be used as an unknown \\
\hline \(\rho\) & P & rho & r, rh & \\
\hline 0, 5 & \(\Sigma\) & sigma & s & angle, or angle of reference \\
\hline \(\tau\) & T & tau & t & \\
\hline \(v\) & Y & upsilon & u, y & in Trigonometry. \\
\hline ¢ & \(\pm\) & phi (phee) & ph & , \\
\hline \({ }_{\chi}\) & \({ }_{\text {Y }}\) & chi (khee) & \({ }_{\text {chkh }}^{\text {ps }}\) & \\
\hline \(\omega\) & \(\Omega\) & omega & ps & \(\theta\) \\
\hline
\end{tabular}

In Trig. you first need to learn how to identify and label according to the Angle of Reference
ADJACENT, OPPOSITE, HYPOTENUSE
Let's label the Right Triangles below as "ADJ. OPPs. and HYP." to the angle Theta.


Now given Triangle ABC, and their respective sides \(a, b, c\); label the Triangle if Angle A is the Angle of reference.


Label the Triangle according to \(<\mathrm{B}\) :


The "Adjacent side" is the \(\qquad\)
Describe determining the "Opposite side." \(\qquad\)

\section*{SOH-CAH-TOA}


WHY IS THE TANGENT RATIO OF A RIGHT TRIANGLE REFERRED TO AS "TOA?"


\section*{Review of Pythagorean Thm. And Intro to Trig.}

SOH-CAH-TOA
\[
\text { (1) CAH } \longrightarrow \cos A=\frac{\text { length of leg adjacent to } \angle A}{\text { length of hypotenuse }}
\]

Cosine is the Ratio that
(CAH = Dude in Hawaiian)
WHY IS THE Cosine RATIO OF A RIGHT TRIANGLE REFERRED TO AS "CAH?"

FIND THE Cosine RATIOS OF:
\(\operatorname{Cos} K=\) \(\qquad\) \(\operatorname{Cos} \mathrm{J}=\) \(\qquad\)

\section*{SOH-CAH-TOA}


Review of Pythagorean Thm. And Intro to Trig.
Using SOH-CAH-TOA to find lengths of Right Triangles:
\begin{tabular}{|ll|}
\hline 1. Label the Triangle & 2. Choose from SOH-CAH-TOA \\
3. Substitution & 4. Solve \\
\hline
\end{tabular}

2.A-----------------------------1.


3. You are skiing on a mountain with an altitude of 1200 feet. The angle of depression is
\(21^{\circ}\). Find the distance \(x\) you ski down the mountain to the nearest foot.


5. MAKING AN ARGUMENT Your friend uses the
equation \(\sin 49^{\circ}=\frac{x}{16}\) to find \(B C\). Your cousin uses
the equation \(\cos 41^{\circ}=\frac{x}{16}\) to find \(B C\). Who is correct?
Explain your reasoning.



"Trig.Calculations Quiz"
Calculate the trig expressions and round to the nearest decimal.
1. Find \(\left(\operatorname{Sin} 30^{\circ}\right)\)
2. Find \(8\left(\operatorname{Sin} 80^{\circ}\right)\)
3. Find \(50\left(\operatorname{Cos} 26^{\circ}\right)\)
4. Find \(4\left(\operatorname{Cos} 30^{\circ}\right)\)


Name \(\qquad\)
"Trig.Calculations Quiz"

Calculate the trig expressions and round to the nearest decimal.
1. Find \(\left(\operatorname{Cos} 30^{\circ}\right)\)
2. Find \(8\left(\operatorname{Cos} 80^{\circ}\right)\)
3. Find \(50\left(\operatorname{Sin} 26^{\circ}\right)\)
4. Find \(4\left(\operatorname{Sin} 30^{\circ}\right)\)


Name

"Trig.Calculations Quiz"
Calculate the trig expressions and round to the nearest decimal.
1. Find \(\left(\operatorname{Sin} 50^{\circ}\right)\)
2. Find \(8\left(\operatorname{Sin} 45^{\circ}\right)\)
3. Find \(50\left(\operatorname{Cos} 62^{\circ}\right)\)
4. Find \(4\left(\operatorname{Cos} 80^{\circ}\right)\)


Name \(\qquad\)

"Trig.Calculations Quiz"
Calculate the trig expressions and round to the nearest decimal.
1. Find \(\left(\operatorname{Sin} 50^{\circ}\right)\)
2. Find \(8\left(\operatorname{Sin} 45^{\circ}\right)\)
3. Find \(50\left(\operatorname{Cos} 62^{\circ}\right)\)
4. Find \(4\left(\operatorname{Cos} 80^{\circ}\right)\)


Name \(\qquad\)
Calculate the trig expressions and round to the nearest decimal.
1. Find \(\left(\operatorname{Cos} 50^{\circ}\right)\)
2. Find \(8\left(\operatorname{Cos} 54^{\circ}\right)\)
3. Find \(50\left(\operatorname{Sin} 62^{\circ}\right)\)
4. Find \(4\left(\operatorname{Sin} 80^{\circ}\right)\)


Review of Pythagorean Thm. And Intro to Trig.
Monitoring Progress and Modeling with Mathematics
[COLLABORATION ASSIGNED PROBLEMS] 1 PRODUCT PT.

In Exercises 3-8, find \(\sin D, \sin E, \cos D\), and \(\cos E\). Write each answer as a fraction and as a decimal rounded to four places.
3.

4.

5.

6.
 E 8.


In Exercises 17-22, find the value of each variable using sine and cosine. Round your answers to the nearest Itenth.
1. Label the Triangle
2. Choose from SOH-CAH-TOA
3. Substitution
4. Solve (One variable at a time)
17.

19.

21.

22.
18.




\section*{The Competition continues,}

\section*{"beast coast" vs "best coast."}
* Balance teams
* Relay approach
*All participate. *Winner gets Scholar for Treats next week \$\$

Review of Pythagorean Thm. And Intro to Trig.
3.



Group Names \(\qquad\) Problem: \(\qquad\)
GROUP CHALLENGE PROBLEMS CHECKLIST:

\section*{DIAGRAM/SKETCH}
_ LABELS (ADJ, OPPs, HYP)
_CORRECT SET UP \& WORK (SOH-CAH-TOA)
_ Clear Neat Steps to Solution.
__Proper answer Explanation or Sentence(s)
Present your problem(s) \(\overparen{55+t^{+5}}\)

\section*{Review of Pythagorean Thm. And Intro to Trig.}

MODELING WITH MATHEMATICS Submarines use
sonar systems, which are similar to radar systems, to detect obstacles. Sonar systems use sound to detect objects under water.
[Group of 3]

a. You are traveling underwater in a submarine. The sonar system detects an iceberg 4000 meters ahead, with an angle of depression of \(34^{\circ}\) to the bottom of the iceberg. How many meters must the submarine lower to pass under the iceberg?
b. The sonar system then detects a sunken ship 1500 meters ahead, with an angle of elevation of \(19^{\circ}\) to the highest part of the sunken ship. How many meters must the submarine rise to pass over the sunken ship?

MODELING WITH MATHEMATICS Submarines use sonar systems, which are similar to radar systems, to detect obstacles. Sonar systems use sound to detect

a. You are traveling underwater in a submarine. The sonar system detects an iceberg 4000 meters ahead, with an angle of depression of \(34^{\circ}\) to the bottom of the iceberg. How many meters must the submarine lower to pass under the iceberg?
[Group of 3]

b. The sonar system then detects a sunken ship 1500 meters ahead, with an angle of elevation of \(19^{\circ}\) to the highest part of the sunken ship. How many meters must the submarine rise to pass over the sunken ship?
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\longrightarrow\)

An airplane is flying at an altitude of 11,000 feet. The pilot wants to make a smooth final descent to runway at an angle of depression of \(5^{\circ}\). How far from the runway should the pilot begin the descent?

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\square\)

You want to take a picture of a statue on Easter Island, called a moai. The moai is about 13 feet tall. Your camera is on a tripod that is 5 feet tall. The vertical viewing angle of your camera is set at \(90^{\circ}\). How far from the moai should you stand so that the entire height of the moai is perfectly framed in the photo?


\section*{Review of Pythagorean Thm. And Intro to Trig.}

According to Chinese legend, General Han Xin (Han dynasty 206 B.C - 220 A.D.) flew a kite over the palace of his enenty to determine the distance between his troops and the polace. If the general let out 1000 meters of string and the kite was flying at a \(40^{\circ}\) angle of elevation, how far away was the palace from General Han Xin's position?

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\square\)


\section*{Link to Quiz}```

