SOLVING EQUATIONS OF ONE VARIABLE ALGEBRAICALLY ALAEBRA uses the concept of isolating the variable by applying the inverse ("Opposite") to BOTH sides of the EQuation

- if you can solve the "one step" problem scenarios below (a-f). You can solve any multi-step Equation.
a) $x+7=-9$

b) $7 x=-21$
c) $\frac{x}{-7}=-4$
d) $-x=5$

$(-7) \frac{x}{-7}=-4(-7)$
$\frac{-1 x}{-1}=\frac{5}{-1}$

e) $\frac{2}{3} x=12 \quad$ f) $-\frac{2}{3} x=\frac{4}{5}$
$\frac{3}{2} \cdot \frac{2}{3} x=12 \cdot \frac{3}{2}\left(-\frac{3}{2}\right)-\frac{2}{3} x=\frac{4}{5}\left(-\frac{3}{2}\right)$
$\frac{3}{2} \cdot \frac{z}{2} x=12 \cdot \frac{3}{2} \quad\left(\frac{6}{2}\right)+\frac{\pi}{2} x=\frac{4}{5}\left(-\frac{3}{2}\right)$

Examples a \& are solved multiplying by the RECIPROCAL of the fraction next to the variable. If the fraction is $(-)$, then it's $\begin{array}{ll}x=\frac{36}{2} & x=-\frac{12}{10} \\ x=18 & x=-\frac{6}{5}\end{array}$ reciprocal is also (-). You could solve Ex.'s b through d,
MULTI-STEP PROBLEMS similarly."
g) $3 k-5=-21$
h) $\frac{r-5}{3}=-21$
i) $\frac{p}{3}-5=-21$
$3 k-5=-21$
(3) $\frac{r-5}{3}=-21(3)$
$\frac{+5}{3 k}=-\frac{+5}{36}$
$3 k=-\frac{16}{3}$
(3) $\begin{aligned} \frac{r-5}{2} & =-21(3) \\ r-5 & =-63\end{aligned}$
(3)
$\frac{p}{3}-5=-21$
$+5+5$ \qquad

